
211© Grzegorz Stencel, Luca Berton 2025
G. Stencel and L. Berton, Kubernetes Recipes,
https://doi.org/10.1007/979-8-8688-1325-2_7

CHAPTER 7

Storage in Kubernetes
As applications evolve, the demands for data storage for persistent
and non-persistent data grow increasingly complex. In the dynamic
environment of Kubernetes, managing persistent storage presents unique
challenges, such as ensuring data consistency, handling the lifecycle of
storage resources, and optimizing performance. Kubernetes offers robust
solutions to these problems through its storage management features,
including persistent volumes (PVs), Persistent Volume Claims (PVCs), and
storage classes.

This chapter guides us into the intricacies of managing storage in
Kubernetes, providing practical steps and insights for effectively leveraging
these storage mechanisms. Whether we are dealing with stateful
applications that require data persistence or seeking to automate storage
provisioning for scalable applications, this chapter offers the guidance
we need.

7.1 Storage for Containerized Workloads
Effectively managing storage for containerized workloads is crucial for
ensuring data persistence, consistency, and optimal performance in
dynamic and scalable environments like Kubernetes.

Luca Berton
SAMPLE https://kubernetes.recipes/

212

 Problem
Containerized applications often require persistent storage to retain
data beyond the lifespan of individual containers. This persistent storage
need presents challenges in dynamic and scalable environments like
Kubernetes. Specifically, managing the lifecycle of storage resources,
ensuring data consistency, and optimizing performance are common
problems.

 Solution
Kubernetes manages storage via persistent volumes (PVs), Persistent
Volume Claims (PVCs), and storage classes. Here’s how we can manage
storage for containerized workloads:

 1. Define a Persistent Volume (PV): Create a YAML
file to define a persistent volume, for example:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-example
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 storageClassName: standard
 hostPath:
 path: "/mnt/data"

CHAPTER 7 STORAGE IN KUBERNETES

Luca Berton
SAMPLE https://kubernetes.recipes/

213

 2. Define a Persistent Volume Claim (PVC): Create a
YAML file to define a Persistent Volume Claim, for
example:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-example
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 storageClassName: standard

 3. Deploy an Application Using the PVC: Modify our
application deployment YAML file to use the PVC,
for example:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 1
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx

CHAPTER 7 STORAGE IN KUBERNETES

Luca Berton
SAMPLE https://kubernetes.recipes/

214

 spec:
 containers:
 - name: nginx
 image: nginx:latest
 volumeMounts:
 - mountPath: "/usr/share/nginx/html"
 name: storage
 volumes:
 - name: storage
 persistentVolumeClaim:
 claimName: pvc-example

 4. Apply the Configurations: Apply the PV, PVC, and
application deployment configurations using kubectl:

kubectl apply -f pv.yaml
kubectl apply -f pvc.yaml
kubectl apply -f deployment.yaml

 Discussion
Managing storage in Kubernetes involves understanding and correctly
implementing persistent volumes, Persistent Volume Claims, and storage
classes. PVs are storage resources in the cluster, while PVCs are requests
for those resources. Storage classes provide a way to define different types
of storage (e.g., fast SSDs, slow HDDs) and their provisioning parameters.

 Persistent Volumes (PV)
PVs are resources in the cluster that provide durable storage. They have
a lifecycle independent of any individual pod that uses the PV. They are
defined by a YAML file and include details such as storage capacity and
access modes (e.g., ReadWriteOnce, ReadOnlyMany, ReadWriteMany).

CHAPTER 7 STORAGE IN KUBERNETES

Luca Berton
SAMPLE https://kubernetes.recipes/

215

 Persistent Volume Claims (PVC)
PVCs are requests for storage by a user. They are similar to a pod in that
they consume resources in the cluster. PVCs can request specific sizes and
access modes, and Kubernetes will bind the PVC to an available PV that
meets the requirements.

 Storage Classes
Storage classes allow administrators to define different types of storage
offered in a cluster. Each storage class might map to a different quality-of-
service level, such as IOPS performance or backup policies.

7.2 Defining StorageClass
 Problem
Manually provisioning persistent volumes (PVs) can be time-consuming
and error-prone, especially in dynamic environments where storage
needs frequently change. This approach lacks flexibility and can lead to
inefficiencies in resource utilization.

 Solution
Use a StorageClass to enable dynamic provisioning of PVs. A StorageClass
defines the parameters and provisioner for storage backends, allowing
Kubernetes to automatically create PVs on demand based on PVC requests.

Here’s an example StorageClass definition:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: fast-storage

CHAPTER 7 STORAGE IN KUBERNETES

Luca Berton
SAMPLE https://kubernetes.recipes/

